
Forget trees and regimes for the moment. Recall that for the OU process
dX = α1(θ1 −X)dt + σ1dWt starting at X0 at time 0, it’s value at time T1 is
given by the:

XT1
= X0e

−α1T1 + θ1
(
1 − e−α1T1

)
+

∫ T1

0

σ1e
α1(s−T1)dWs (1)

Image at time T = Ti this process switches to possibly new values of the
constants αi, θi, and σi, which we will denote with the subscript i. The process
just picks up where it left off:

XT2
= XT1

e−α2(T2−T1) + θ1

(
1 − e−α2(T2−T1)

)
+

∫ T2

T1

σ1e
α1(s−T1)dWs (2)

And so on. Define the length of an interval as ti ≡ (Ti − Ti−1). Then the
value of X at the end of the nth interval is given by, using the recursion above,

XTn
= X0e

−
∑n

i=1 αiti +

n∑
i=1

θi (1 − eαiti
)

exp

−
n∑

j=i+1

αjtj


+

n∑
i=1

exp

−
n∑

j=i+1

αjtj

∫ Ti

Ti−1

σie
αi(s−Ti)dWs

 (3)

Let’s define a bit more notation to simply this expression before we go on.
Inside the sums across the whole time series are these sums from the current
position i forward till the end. So let’s define that term:

γi = −
n∑

j=i+1

αjtj (4)

Also note that because the parameters are constant over the range inside each
integration, we can rewrite those integrals in terms of the interval lengths ti as
well, simplifying the notation a bit further.1 Now we’re have the more man-
agable expression:

XTn = X0e
γ0 +

n∑
i=1

(
θi
(
1 − eαiti

)
eγi
)

+

n∑
i=1

[
eγi
∫ ti

0

σie
αi(s−ti)dW i

s

]
(5)

Let’s first consider the expectation of this process. Remeber that the Ito
integral is a martingale, so it’s expectation is zero, while the more friendly sums
remain:

E(XTn
) = X0e

γ0 +

n∑
i=1

(
θi
(
1 − eαiti

)
eγi
)

(6)

1This technically involves a change of variables, s−Ti−1. The important thing is just that
the integrals aren’t over the same Brownian motion on each interval. We distinguish them
with the added i superscript.
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Now let us consider the covariance Cov(XT , XS) = E [(XT − E(XT ))(XS − E(XS))],
given that each started at X0 at time 0. Subtracting out the expected value
from our full equation (5) leaves us with the product of the Ito integrals:

Cov(XT , XS) =

n∑
i=1

[
eγi
∫ ti

0

σie
αi(u−ti)dW i

u

] m∑
j=1

[
eγ
′
j

∫ sj

0

σ′je
α′j(v−sj)dW j

v

]
(7)

Where we use a prime to with the γ′j and not γi to remind us that those
functions are defined as sums starting from i or j and going all the way to
different tip indices. This will matter later.

We are now ready for some tree thinking. Let XT and XS be the traits of
tips in the phylogeny. Consider that the parameters αi, θi, σi can only change
at branching points (the common simplifying assumption). Consider each edge
or branch in the phylogeny traversed by going back to the root from XT as
one of the n intervals in the above equation, where the ith interval has length
ti. Consider each edge going back from the other tip XS to be one of the m
intervals in the above equation, where the jth interval has branch length sj . We
use primes simply to remind us that when a parameter is being indexed by j,
it is relative to the history of the m intervals in Xs. Let us begin at the root,
and assume that XS and XT share a common ancestor some time more recently
than that. (If they do not, their history is clearly independent given the root
state, and the covariance is 0).

While they share history, for each branch where i=j, ti = sj , they are
driven by the same Brownian process, dWu = dWv. As we factor out the terms
in the sum, we can immediately set any cross-term to zero, since it multiplies
independent intervals of the path. Similarly, we can set to zero all intervals in the
sum after the most common ancestor k, since again, the paths are independent
and contribute no covariance.

=

k∑
i=1

[
eγi
∫ ti

0

σie
αi(u−ti)dWu

] [
eγ
′
i(m)

∫ ti

0

σie
αi(u−ti)dWu

]
(8)

Note that we have taken the product along i = j, and asserted ti = si, αi =
α′i, etc. The only difference in the two terms are the γi and γ′i values – recall
though they both start at time i one sums all the way up the history of Xs and
the other up Xt. only when we consider the variance of a single tip, Xs = Xt,
are they the same. Note also that these terms sit outside of the Ito integrals.

We can now use Ito isometry to multiply the identical Ito integrals, returning
a normal Riemann-Stiljes integral,

=

k∑
i=1

[
eγieγ

′
i

(∫ ti

0

σie
αi(u−ti)dWu

)2
]

=

k∑
i=1

[
eγieγ

′
i

∫ ti

0

σ2
i e

2αi(u−ti)du

]
(9)

integrating, we have
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Cov(XT , XS) =

k∑
i=1

[
eγieγ

′
i
σ2
i

2αi

(
1 − e−2αiti

)]
(10)

Since this is still a Gaussian process Hansen (1997), the probability distri-
bution is completely determined by the mean and covariance equations (6) and
(10), with γi given in (4).
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