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Comparative methods used to study patterns of evolutionary change in a continuous trait on a phylogeny range from Brownian

motion processes to models where the trait is assumed to evolve according to an Ornstein–Uhlenbeck (OU) process. Although

these models have proved useful in a variety of contexts, they still do not cover all the scenarios biologists want to examine. For

models based on the OU process, model complexity is restricted in current implementations by assuming that the rate of stochastic

motion and the strength of selection do not vary among selective regimes. Here, we expand the OU model of adaptive evolution

to include models that variously relax the assumption of a constant rate and strength of selection. In its most general form, the

methods described here can assign each selective regime a separate trait optimum, a rate of stochastic motion parameter, and a

parameter for the strength of selection. We use simulations to show that our models can detect meaningful differences in the

evolutionary process, especially with larger sample sizes. We also illustrate our method using an empirical example of genome

size evolution within a large flowering plant clade.
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Single-rate Brownian motion works reasonably well as a model

for evolution of traits. It models drift, drift-mutation balance, and

even stabilizing selection toward a moving optimum (Hansen and

Martins 1996). However, a single parameter model can certainly

not explain the evolution of traits across all life. There have been

extensions to the model, such as a single Ornstein–Uhlenbeck

(OU) process that has a constant pull toward an optimum value, a

multiple mean OU process with different possible means for dif-

ferent groups (Hansen 1997; Butler and King 2004), and multiple

rate Brownian motion processes allowing different rates of evo-

lution on different branches (O’Meara et al. 2006; Thomas et al.

2006). These models, while useful, still do not cover all the sce-

narios biologists want to examine. For example, existing models

with a value toward which species are being pulled all have a fixed

strength of pull over the entire history of the group. It is possible

to allow the rate of stochastic motion to vary, or the value of the at-

tractor to vary, but not for both to vary. Such restrictions on model

complexity may make sense when phylogenies are limited to a few

dozen taxa. However, in an era where phylogenies can have over

55,000 taxa (Smith et al. 2011), we may be so bold as to attempt

to fit models that vary both rates and means of the evolutionary

process. This article develops and implements such models.

Generalizing the Hansen Model
Hansen (1997) described a model where quantitative characters

are assumed to evolve according to an OU process. The Hansen

model, as it has become known, expresses the amount of change
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in a quantitative trait along each branch in a phylogeny and is

given by the stochastic differential equation:

dXi (t) = α [βi (t) − Xi (t)] dt + σd Bi (t). (1)

Equation (1) describes the amount of change in a quantita-

tive trait (Xi) during an increment of time, t, when it is assumed

that along each branch there is an optimum trait value (βi(t)) that

identifies a selective regime acting on a lineage over the course

of its history. The evolution of the trait toward this optimum is

governed by a constant, α, describing the strength of selection.

The terms dBi(t) are random variables denoting the increments of

a Brownian motion process and are assumed to be normally dis-

tributed with an expectation of zero and a variance equal to σ2dt.

Thus, σ2 is a constant describing the rate of stochastic evolution

away from the optimum.

Butler and King (2004) implemented the Hansen model in

a likelihood framework. Rather than assuming an optimum for

every branch in the tree, Butler and King (2004) assumed that only

a small number of distinct selective regimes have operated on a

quantitative trait, with each being defined by a single optimum θk.

An assumption of current implementations of the Hansen model is

that both α and σ2 are constants, and do not vary among selective

regimes. Here, we broaden the implementation of Butler and King

(2004) to not only allow α and σ2 to vary across selective regimes,

but also to allow smaller parts of branches to be assigned different

models. For consistency, we rely on the same terminology and

notation as in Butler and King (2004). For example, the times

at which changes in selective regimes or speciation events take

place are referred to as “epochs.” The ith lineage is divided into

κ(i) epochs, and thus ti,γ can refer to the beginning of an epoch

assigned model γ. The term βi,γ is the optimum for lineage i with

model γ. Note we rely on the same notation as Butler and King

(2004), but using subscripts instead of superscripts (e.g., ti,γ = tγ

i ).

MULTIPLE VARIANCE PARAMETERS

We begin by broadening the Hansen model to allow the stochastic

motion parameter, σ2, to vary across selective regimes. Because

Brownian motion is nondirectional, the expected values of this

model will remain the same as in Hansen (1997) and Butler and

King (2004), although here we allow a given edge to be subdivided

into more units for a greater number of optima per edge. Thus,

following Butler and King equations (A2) and (A3) we start with

the moments of equation (1):

E [Xi (T ) |Xi (0) = θ0 ] = θ0e−αT +
∫ T

0
αe−αtβi (T − t) dt (2)

Vi j = Cov[Xi (T ) , X j (T ) |Xi (0)

= X j (0) = θ0] =
∫ T

0
σ2e−2αtρi j (T − t) dt.

(3)

The correlation ρij is based on the assumption that taxa evolve

independently after divergence (ρij = 0) and are the same before

diverging (ρij = 1; see Appendix). Butler and King (2004) convert

the continuous trait optimum βi(t) in equation (2) to a series of

piecewise-constant selection regimes,

E [Xi (T ) |Xi (0) = θ0 ] = θ0e−αT +
κ(i)∑
γ=1

e−αT
(
eαtiγ − eαti,γ−1

)
βi,γ,

(4)

where κ(i) is the index of the last epoch of lineage i. To allow σ2

to vary across selective regimes, we only have to modify equation

(3) to allow σ2 to be a function of time. In the Appendix, we

derive the following formula for calculating the Vij th element of

V describing the covariance between species i and j:

Vi j = e−2αT

2α

κ(i, j)∑
γ=1

(e2αsi j,γ − e2αsi j,γ−1 )σ2
γ. (5)

For t > 0, the path between the root and the most recent

common ancestor (mrca) of the ith and jth lineage is divided into

κ(i,j) epochs, [0, si j,1], [si j,1, si j,2], . . . , [si j,κ(i j)−1, si j,κ(i j)], each

assigned model γ. When α approaches zero, the covariance among

species converges to the covariance obtained from a model that

assumes one Brownian motion rate parameter per regime (i.e.,

Vij = σ2
γsij). Similarly, when σ2

γ = σ2
γ−1, the elements of Vij re-

duces to Vij = σ2sij.

MULTIPLE ATTRACTION PARAMETERS

Allowing α to vary among selective regimes alters the way the

expected values are calculated. The Hansen model assumes that

the expectation is a weighted average of θ, where more recent

regimes tend to have a greater effect on expected values than more

ancient regimes (although this is influenced by the amount of time

spent in each). This effect is stronger with greater values of α. With

multiple attraction parameters, the calculation of expected values

will be even more complex. For example, if a lineage spends the

first half of its time in one regime with a high α, and the rest of

the time in a regime with a very weak α, the expected trait value

may be closer to the mean from the first regime than that of the

second.

Similarly, varying α will complicate the calculation of the

covariance among species. Under the Hansen model, the covari-

ance equals the variance of the common ancestor multiplied by an

exponential decay with separation time (Hansen 1997). However,

when α varies the rate of decay will become even more dependent

on when any two species shared a particular selective regime. For

example, if a lineage spends the first half of its time in one regime
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with a high α, and the rest of the time prior to speciation in a

regime with a very weak α, the covariance between species i and

j will decay much slower than if the more recent regime had the

higher value of α.

For both α and σ2 to vary, we can solve equation (1) so that

these variables are now a function of time (see Appendix):

E
[
Xi (T )

∣∣Xi (0) = θ0
] = θ0e− ∫ T

0 αi (t)dt

+e− ∫ T
0 αi (t)dt

(∫ T

0
αi (t) βi (t)e

∫ t
0 αi (x)d(x)dt

)
(6)

Vi j = Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0]

= E

⎡
⎣
⎛
⎝e− ∫ T

0 αi (t)+α j (t)dt

⎞
⎠
⎛
⎝∫ T

0
σi (t)e

∫ t
0 αi (x)dx d Bi (t)

⎞
⎠

×
⎛
⎝∫ T

0
σ j (t)e

∫ t
0 α j (x)dx d B j (t)

⎞
⎠
⎤
⎦. (7)

Similar to equation (2) described above, we can convert the

continuous trait optimum βi(s) in equation (6) as well as αi(s) into

a series of piecewise-constant selection regimes,

E[Xi (T )‖Xi (0) = θ0] = θ0e
−

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)

+
⎛
⎝e

−
κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)

⎞
⎠ κ(i)∑

γ=1

βi,γ(eαi,γsi,γ − eαi,γsi,γ−1 ).
(8)

For t > 0, the ith lineage is divided into κ(i) epochs, [0, si,1],

[si,1, si,2], . . . , [si,κ(i)−1, si,κ(i)]. However, as written, the model

assumes one optimum, βi,γ, and one attraction parameter, αi,γ, for

each branch in a phylogeny. To reduce the number of parameters

in the model, Butler and King (2004) assumed that only a small

number (r) of distinct selective regimes have operated on any

given phylogeny, and reduced the number of βi,γ by substituting

in the θk (k = 1, . . . , r) corresponding to the selective regime

operating on each branch. Under this assumption, each branch

optimum βi,γ only depends on the values of θ1, θ2, . . . , θr:

βi,γ =
r∑

k=1

βik,γθk (9)

The indicator variable, βik,γ, reflects the mapping of these

selective regimes on the phylogeny. When βik,γ = 1, βi,γ is the

optimum on lineage i with model γ, and model γ has optimum

θk , such that for any i, βi,γ = θγ. We follow these same assump-

tions for reducing the number of αi,γ in the model. A single

α̃k , k = 1, . . . ,r defines the strength of selection operating

on each selection regime, and we replace each αi,γ with α̃k

corresponding to the selective regime operating on that branch.

Thus, the strength of selection, αi,γ, operating on each branch

depends on α1, α2, . . . ,αr:

αi,γ =
r∑

k=1

βik,γα̃k (10)

The expected mean trait values at the end of each evolutionary

lineage are calculated as a weighted sum of each optima and the

ancestral state. Taking into account equations (9) and (10), we can

express equation (2) using matrix notation as:

E [X(T ) |X(0) = θ0 ] = Wθ, (11)

where the vector θ = (θ0, θ1, . . . , θr)′ and W is the matrix of

weights with entries

Wi0 = e
−

κ(i)∑
γ=1

((
r∑

k=1
βik,γα̃k

)
(si,γ−si,γ−1)

)
,

Wiκ =
⎛
⎝e

−
κ(i)∑
γ=1

(
r∑

k=1
βik,γα̃k

)
(si,γ−si,γ−1)

⎞
⎠

×
κ(i)∑
γ=1

βik,γ

(
e

(
r∑

k=1
βik,γα̃k

)
si,γ − e

(
r∑

k=1
βik,γα̃k

)
si,γ−1

)
, (12)

for i = 1, . . . , N and k = 1, . . . , r. Because W reflects the expected

weights for each species, each row entry in W is divided by the

sum of its row to ensure that the weights for each species sum to

1.

Finally, we allow both α and σ2 to be a function of time when

computing the covariance of i and j and define Vij th element of

V as:

Vi j = e
−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

)

×
⎛
⎝κ(i, j)∑

γ=1

σ2
γ

e2αγsi j,γ − e2αγsi j,γ−1

2αγ

⎞
⎠ .

(13)

We note that equation (13) reduces to Vij in the simple case

of αk = αk ′ and σ2
γ = σ2

γ−1 (see Appendix).

GENERALIZED LEAST-SQUARES ESTIMATION

Estimates of the vector θ can be solved using the generalized

least-squares (GLS) estimator

θ̂ = (W′V−1W)−1W′V−1x, (14)

where x is the vector of species values, W is the matrix of weights,

and V is the scaled variance–covariance matrix computed for each

species pair. The GLS estimates of θ̂ are conditional on the maxi-

mum likelihood estimates of the vector α = (α̂1, . . . , α̂r ) and the

vector σ = (σ̂2
1, . . . , σ̂

2
r ) with α and σ entering into V through

equation (13) and α entering into W through equation (12).

The log likelihood of the vectors α, σ, and θ given the data is
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evaluated by the function,

log(L) =

log

[
1√

(2π)N det(V)
exp

(− 1
2 (x − Wθ)′(V−1)(x − Wθ)

)]
,(15)

which is solved using a nonlinear optimization routine. This like-

lihood is used in this article when comparing models using the

Akaike Information Criterion (AIC; Akaike 1974), but it could

also be used in likelihood ratio tests or even a Bayesian context.

Current implementations of the Hansen model employ a para-

metric bootstrap procedure to estimate the confidence intervals

surrounding each parameter, which can be computationally inten-

sive. An alternative to this approach is to calculate the confidence

intervals directly. Here, we first calculate the approximate stan-

dard errors associated with the estimated values of the vectors

α, σ, and θ by computing two separate variance–covariance ma-

trices. The first is the estimated variance–covariance matrix of θ̂

and is computed as Sθ̂ = (W′V−1W)−1. The square roots of the

diagonals of this matrix are the standard errors of θ̂. The second is

the variance–covariance matrix of the estimated values of α and

σ, which is computed as the inverse of the Hessian matrix; the

approximate standard errors for α and σ are the square roots of

the diagonals of this matrix. The Hessian is a matrix of second-

order derivatives obtained by evaluating how changes in parameter

values influence the maximum of the log-likelihood function. If

changes in the value of a parameter results in sharp changes in

the slope around the maximum of the log-likelihood function, the

second-order derivative will be large, the standard error will be

small, and the parameter estimate is considered stable. On the

other hand, if the second-order derivative is nearly zero, then the

change in the slope around the maximum is also nearly zero, indi-

cating the parameter value can be moved in any direction without

greatly affecting the log-likelihood value. In such situations, the

standard error of the parameter will be large. The approximate

upper and lower 95% confidence interval for all parameters can

then be computed by multiplying each approximate standard er-

ror by the critical value in the t-distribution where the cumulative

probability is equal to 0.975 (i.e., t (0.975, ∞) = 1.96).

Examples
SIMULATIONS

We evaluated the performance of our method by applying it to

datasets created by simulating multiple-mean OU models that

variously relax the assumptions of a constant α and σ2. The first

model allowed θ and σ2 to vary among regimes, while keeping α

constant. In other words, the simulation tests an OU model with

different state means and multiple variance parameters, and we

refer to this model hereafter as the OUMV model. The second

allowed θ and α to vary among selective regimes, while keeping

σ2 constant (referred to hereafter as the OUMA model). The third

model allowed θ, α, and σ2 to vary among the selective regimes

(referred to hereafter as the OUMVA model).

To account for biases resulting from tree shape, datasets were

simulated on a star tree (unresolved), completely balanced tree,

a pectinate tree (a comb), and a random tree generated under the

birth–death process (birth = 0.4, death = 0.2). For each tree shape,

we also varied taxon sampling by generating trees comprised of

32, 64, 128, and 512 taxa and we scaled the root to tip length to

be one in all trees. In the star trees, we divided the number of

species equally between two selective regimes. For all other tree

shapes, we assumed that all lineages began in the same selective

regime and a transition to a second selective regime occurred

only once and at some point along a branch leading to a subset of

species. For the balanced tree, we assumed the transition occurred

along the branch leading to one of the two subclades arising from

the initial divergence. For the pectinate tree, we assumed the

transition occurred along the branch leading to a subclade that

contained exactly half the total diversity in the tree. Finally, in

the birth–death tree, we randomly assigned the transition to occur

along a branch leading to a subclade that contained roughly a

quarter of the total diversity contained in the tree.

Historically, approaches such as this have been used to es-

timate parameter values or to compare models (e.g., Butler and

King 2004; Davis et al. 2007; Harmon et al. 2008, 2010; Pinto

et al. 2008; Collar et al. 2009; Smith and Beaulieu 2009; Beaulieu

et al. 2010; Edwards and Smith 2010). Although we favor analyses

under the former approach (see Discussion), we investigated the

performance of the models under both approaches. We tested the

fit, bias, and precision of each model under different tree shapes

and taxon sampling strategies by estimating the distance between

the approximating model and the true model from which the data

were generated. Data were simulated under each of the three OU

models described above. Each dataset was evaluated under the

generating model as well as a simple OU model that assumed a

single optimum for all species (referred to hereafter as the OU1

model), and an OU model that assumed different state means

and a single α and σ2 acting on all selective regimes (referred to

hereafter as OUM model, and which is equivalent to the model

of Butler and King [2004]). For each combination of model, tree

shape, and taxon sampling, 1000 datasets were simulated with

known parameters for α, θ, and σ2 and we assumed an OU pro-

cess with a trend, where the respective means for each selective

regime (θ1 = 2.0; θ2 = 0.75) were set to be larger than the starting

value (θ0 = 0.25). We also assumed that a shift from Regime 1 to

Regime 2 resulted in either the relaxation of selection (α1 = 3.0;

α2 = 1.5), an increase in the rate of stochastic motion (σ2
1 = 0.35;

σ2
2 = 1.0), or both, depending on the generating model. The AIC

weight (wi), which represents the relative likelihood that model i

is the best model given a set of models (Burnham and Anderson

2 3 7 2 EVOLUTION AUGUST 2012



EXPANDING THE ORNSTEIN–UHLENBECK MODEL

Table 1. Boxplots depicting the bias and precision of the estimates of α, σ2, and θ. Data were simulated on a star tree (unresolved),

a completely balanced tree, a completely pectinate tree, and a random tree generated under the birth–death process. For each tree, all

lineages were assumed to have begun in the same selective regime (dark gray) and transitioned to a second selective regime (light gray)

only once, which always resulted in either the relaxation of selection (α1 = 3.0; α2 = 1.5; OUMA), an increase in the rate of stochastic

motion (σ2
1 = 0.35; σ2

2 = 1.0; OUMV), or both (OUMVA), depending on the generating model. In all cases, the respective means for each

selective regime (θ1 = 2.0; θ2 = 0.75) were set to be larger than the starting value (θ0 = 0.25). When estimating parameters for datasets

simulated under both OUMA and OUMVA on the pectinate trees (Pectinate), the models almost returned values of θ that were nonsensical.

However, when θ0 was assumed to be distributed according to a stationary distribution and dropped from the model (Pectinate-station),

this no longer occurred in any of the simulated datasets and θ1 and θ2 can be reasonably estimated from the data. All simulations were

carried out in the new R package OUwie. Note that some of the plots under the pectinate tree are truncated by the need to have a

consistent but useful scale across the majority of the simulations.

OUMV

OUMA

OUMVA

32

64

128

512

32

64

128

512

32

64

128

512

BalancedStar Birth-death Pectinate

l θ̂og10 α̂ log10 σ̂
2

l θ̂og10 α̂ log10 σ̂
2

l θ̂og10 α̂ log10 σ̂
2

l θ̂og10 α̂ log10 σ̂
2

Pectinate-station

l θ̂og10 α̂ log10 σ̂
2

-.5 0 .5 1 -1 0 1 0 1 2 3 -.5 0 .5 1 -1 0 1 0 1 2 3 -.5 0 .5 1 -1 0 1 0 1 2 3 -.5 0 .5 1 -1 0 1 0 1 2 3 -.5 0 .5 1 -1 0 1 0 1 2 3

2002), was calculated for all the models. All simulations were

carried out in the new R package OUwie.

Table 1 provides information on the bias and precision of the

estimated parameter values. With the exception of the pectinate

trees, there is a general bias for OUMV, OUMA, and OUMVA to

underestimate θ, in this case, returning values that are too low.

The bias cannot be attributed to any particular θ, as θ1, and θ2 all

exhibited a pattern of generally being underestimated (Table 1).

In contrast, both α and σ2 were consistently overestimated for

all three models, regardless of whether they were allowed to vary

between the two selective regimes (Table 1). However, there was a

general trend in all three models for the biases in these parameters

to decrease as sample size increased (Table 1).

The influence of sample size on the bias and precision of α

was particularly pronounced, which tended to have a negative ef-

fect on the bias and precision of σ2 in the OUMVA model (Table 1).

Under both OUMA and the OUMVA model, the 32 taxa tree in the

birth–death tree set had estimated values of α that were about
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twice, on average, the true values (Table 1). The bias dropped as

sample size increased, but even with a tree of 512 taxa the bias

was never less than 1.10 times the true value. However, when

simulating datasets under the OUM model (results not shown),

the bias with a 512 taxa tree was larger and exceeded 1.25 times

the true value. A key question for many empiricists using these

methods is not “what is the value of α in each regime” but “is the

value of α in Regime 1 much bigger than the value in Regime 2.”

Looking at cases where the model returned an α for Regime 1 that

was at least 10% higher than the α returned for Regime 2, roughly

19% of the datasets simulated on the 512 taxa tree were below

this threshold (with only 12% of all datasets inferring a higher α

for Regime 2). However, for the 128 taxa tree, nearly 50% of the

simulated datasets returned an α for Regime 1 that was less than

10% higher than α for Regime 2. Taken together, these results

suggest that even for moderately sized datasets (e.g., ∼150 taxa)

it may be difficult to confidently infer meaningful differences in α

among selective regimes. The model parameters for these datasets

will tend to return larger values of α with greater uncertainty.

In the pectinate trees, when simulating datasets under both

OUMA and OUMVA, the models returned values of θ that were

nonsensical. Interestingly, when we reran the simulations across

the pectinate trees with θ0 dropped from the model, this behav-

ior no longer occurred in any of the simulated datasets (Table 1).

Dropping θ0 from the model assumes that the starting value is dis-

tributed according to the stationary distribution of the OU process,

where the conditional distribution of X(T) given X(0) in equation

(8) are assumed to have converged on the same distribution. This

would not fit a biological scenario involving a trend away from an

ancestral state, but it does fit a scenario of a stationary evolution-

ary process: the same distribution of optima, selection, and rates

occur in the past as in the present. Under this assumption, the gen-

eral bias was for OUMA and OUMVA to overestimate θ associated

with Regime 2 (Table 1). This suggests caution when compar-

ing values of θ among selective regimes when the tree is highly

imbalanced—they will tend to be unreliable or, at least, very im-

precise and associated with very large standard errors. In such

instances, it may be helpful to drop θ0 from the model entirely.

We note that under some circumstances it may be impossible

to estimate θ0 accurately. Under the OU process the influence

of the starting state, θ0, on the expected values exponentially

decreases at a rate that is determined by α. For larger values of α,

a trait is generally free from the constraints of the starting state

and will be much closer to the optimal value for the selective

regime it is currently in. As a result, the weighting factor in W
representing the influence of the root will decrease and estimates

of θ0 should approach zero. Thus, for large values of α (i.e., α

> 2), the estimates of θ0 will always be small, and the standard

error surrounding θ0 is likely to be positively misleading (i.e.,

false precision).

From a model comparison perspective, the results from com-

parisons of model fit for the birth–death trees are shown in Figure 1

and the results for the balanced and pectinate trees can be found

in Figures S1, S2. Overall, we found that regardless of tree

shape there was a general trend for the mean AIC weight for the

generating model (i.e., OUMV, OUMA, or OUMVA) to increase

with increasing sample size (Fig. 1). Under both the OUMV and

OUMVA models, the 32, 64, and 128 tip trees had datasets that

favored either the OU1 or the OUM models. However, the OU1

model was not favored very often (<2% in all cases), and no

tree size had a large proportion of datasets that favored the OUM

model. When the number of taxa was increased to 512, there

were never any simulated datasets that found support for either

OU1 or the OUM model.

Interestingly, when the generating model was OUMA, there

were no tree sizes that had a greater proportion of datasets that

correctly favored the OUMA model, except in the case of the

balanced trees. When simulating datasets on the balanced trees,

both the 128 and 512 tip trees had a mean AIC weight that was

>0.50, and in both cases the number of datasets that correctly

favored the OUMA model was nearly 50%. However, it is worth

pointing out that the clades that comprise Regime 2 in the balanced

trees contained more species and tended to span more time than

those of the birth–death trees. This suggests that when shifts occur

more recently among selective regimes with unequal sample sizes,

greater uncertainty in model choice is introduced and it is difficult

to correctly favor the OUMA model even when it is the better

model.

THE EVOLUTION OF PLANT GENOME SIZE

Flowering plants exhibit a growth form dependent distribution in

genome size, with “woody” species (i.e., trees/shrubs) character-

ized by small genome sizes with lower overall variance compared

to herbaceous species (Ohri 2005; Beaulieu et al. 2008). When

viewed in the context of microevolutionary processes, such as

selection and drift, the growth form dependent distribution of

genome size could be explained, in part, by consequences as-

sociated with life history. Woody angiosperms take many years

to reach reproductive maturity (Verdú 2002), which has been hy-

pothesized to be linked to their generally slower rates of molecular

evolution across several loci (Gaut et al. 1992, 1996, 1997; Smith

and Donoghue 2008). This implies that the pattern may also man-

ifest at the level of the whole genome, with the longer generation

times of woody angiosperms providing fewer opportunities for

random insertion/deletions to occur per unit time. Indeed, woody

lineages have accumulated changes in genome size at rates that

are an order of magnitude slower than related herbaceous lineages

(Beaulieu et al. 2010). On the other hand, angiosperm trees are

reported to have large effective population sizes (Petit and Hampe

2006), which would make selection more efficient at removing
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Figure 1. Comparisons of model fit based on AIC weights (wi) for birth–death trees comprised of 32, 64, 128, and 512 taxa. Data were

simulated under each of the three OU models that allowed the rate of stochastic motion (σ2) to vary (OUMV, A), or the strength of

selection (α) to vary (OUMA, B), for both to vary (OUMVA, C). When their fit (·) was compared against a simple OU model that assumed a

single optimum for all species (OU1, �) and an OU model that assumed different state means and a single α and σ2 acting all selective

regimes (OUM, Î), there was a general trend for the mean AIC weight to increase with increasing sample size.

deleterious mutations and excess DNA (Lynch 2007). Stronger

selection in woody species would also be consistent with the

suggestion that large increases in DNA content negatively affect

woody growth and physiology (Stebbins 1938; Beaulieu et al.

2008). Here, we illustrate our method by testing for an asymme-

try in the strength of selection and stochastic motion acting on

genome size due to growth form.

We focus our analysis on the Monocotyledonae (monocots;

Cantino et al. 2007), a major branch of the angiosperms. The

monocots are a large clade of mainly herbaceous angiosperms

that also contain a few clades of predominately woody species, in-

cluding the palms (Arecales; APG III 2009). However, it is worth

noting that unlike other woody angiosperms, “woody” monocots

do not produce true “wood” (i.e., secondary xylem). Here, we gen-

erally define the tree/shrub or “woody” category as simply large

plants with long generation times (e.g., Smith and Donoghue

2008). Genome size estimates were taken from the Plant DNA

C-values database (release 5.0; Bennett and Leitch 2010) for

monocot species where both the 1C amount (the amount of DNA

in the unreplicated gametic nucleus) and the ploidy level were

known. Genome size was log10-transformed prior to all analy-

ses to ensure the data minimally conformed to Brownian motion

evolution (O’Meara et al. 2006; Oliver et al. 2007).

The procedure used to construct a large sequence based phy-

logeny follow the methods described by Smith et al. (2009) and

implemented in the program PHLAWD. We specified atpB, matK,

ndhF, rbcL, and trnL-F as our genes of interest and we limited

our search of GenBank to only return sequences for taxa repre-

sented in our genome size dataset. Our final combined sequence

matrix contained 590 species and 7213 aligned sites. We con-

ducted 100 maximum likelihood analyses on this matrix using

the standard RAxML search algorithm under the GTR+CAT
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approximation of rate heterogeneity partitioned for each gene

(Stamatakis 2006). The final 100 topologies were rooted with

Acorales (sensu Chase et al. 2006) and scored under GTR+� to

estimate molecular branch lengths and to identify the tree with

highest likelihood score. We assigned minimum age constraints

based on 14 described fossils with unequivocal affinities to clades

nested within the monocots (see Supporting Information). The

maximum-likelihood (ML) tree was then converted to ultrametric

using the semiparametric penalized likelihood method developed

by Sanderson (2003) and implemented in r8s. The cross-validation

procedure was used to find the optimal value of the smoothing pa-

rameter (λ). To accommodate our large tree, we randomly pruned

our ML tree to 60 taxa 10 times, and the consistent best esti-

mate of λ was used to smooth the rates across the entire ML tree.

The final tree is available at TreeBASE (http://www.treebase.org),

accession number 12409.

Slow growing, tall, and “woody” genera have been

described in several different monocot families, including

Arecaceae, Asparagaceae (e.g., Dasylirion, Dracaena, Nolina,

Xanthorrhoea), Bromeliaceae (e.g., Puya), Dasypogonaceae

(Dasypogon, Kingia), Pandanaceae (Pandanus), Strelitziaceae

(e.g., Ravenala), and the woody bamboo genera in the tribe

Bambuseae of Poaceae (e.g., Phyllostachys, Semiarundinaria,

Sasa). However, due to the absence of genome size and/or

sequence data for many of these genera the effect of growth form

analyses were restricted to comparisons between (1) Dasypogon

(Dasypogonaceae; 1 species) and the “woody” palms (Arecaceae;

36 species), and (2) the remaining species that were scored as

herbaceous (553 species). We reconstructed the likeliest growth

form at all internal nodes of our dated ML tree using a likelihood-

based ancestral state reconstruction model (Pagel 1999) that

assumed equal transitions rates between character states. Given

these internal estimates, the simplest explanation is a single

transition from herbaceous to the woody habit reconstructed

along the branch leading to the split between Dasypogon and the

Arecales (Fig. 2A).

We fit six different models of genome size evolution. The

two simplest models were a single-rate Brownian motion model

(BM1) and an OU model with one optimum for all species of

monocots (OU1). We fit a multiple rate Brownian motion model

that assigned a separate rate for each character state (BMRC). In

this case, a separate rate was assigned to woody and herbaceous

lineages. The OUM model assumed two optima for each growth

form while keeping both α and σ2 constant. Finally, we assessed

the fit of the OUMV, OUMA, and OUMVA models that assumed

two optima but varied α and σ2 between woody and herbaceous

lineages. In all cases, we dropped θ0 from the model and assumed

that the starting value was distributed according to the stationary

distribution of the OU process (see above). All tests were carried

out in OUwie using the “noncensored” approach of O’Meara

Table 2. The fit of alternative models of genome size evolution

in monocots. The best model, based on �AIC and Akaike weights,

was the OUMVA, which estimated a separate θ, α, and σ2 for woody

and herbaceous monocot lineages.

Model -lnL AIC �AIC wi

BM1 −227.6 459.1 156.2 <0.01
BMS −203.0 412.0 109.1 <0.01
OU1 −160.0 326.1 23.2 <0.01
OUM −159.2 326.5 23.6 <0.01
OUMV −147.3 304.6 1.7 0.290
OUMA −159.2 328.5 25.6 <0.01
OUMVA −145.3 302.9 0.0 0.678

Table 3. Parameter estimates and their associated 95% confi-

dence interval (CI) for the OUMVA model, the model that best fit the

genome size data. Each CI was obtained by multiplying each ap-

proximate standard error by the critical value in the t-distribution

where the cumulative probability is equal to 0.975 (i.e., t (0.975,

∞) = 1.96).

Herb Woody
Estimate 95% CI Estimate 95% CI

α 3.85 ± 0.955 <0.001 ± <0.01
σ2 2.51 ± 0.376 0.531 ± 0.281
θ 0.618 ± 0.143 <0.001 ± ∞

et al. (2006) that assumes that the placement of a state change

along an internal branch is known.

Results, which are based on parameters estimated on the

maximum likelihood tree, are summarized in Tables 2 and 3. The

best model, based on �AIC and Akaike weights (Table 2), was

one indicating that both the strength of selection and the rate of

stochastic motion in genome size differ between the two selective

regimes. The optimum value for woody plants was less (the back-

transformed mean = 1.0 pg; Fig. 2B) than the optimum inferred

for herbaceous lineages (the back-transformed mean = 4.15 pg;

Fig. 2B). However, the optimum value for woody lineages was not

identifiable (Fig. 2B), which may be explained by very weak se-

lection (αW < 0.001). As α approaches 0, a selective regime will

behave more consistently with a Brownian motion process and

the likelihood profile for θ will be flat, making it difficult to esti-

mate this parameter (Butler and King 2004). Changes in genome

size in woody lineages are, therefore, driven more by stochastic

changes than by adaptive movement toward an optimal value.

However, woody lineages had a rate of stochastic motion that

was nearly five times slower than the rate of herbaceous lineages

(Table 3), suggesting that these stochastic changes do not happen

very often. Finally, we note that the width of the 95% confidence

interval calculated from the approximate standard errors for all

parameters was strongly correlated with the width of confidence
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Figure 2. (A) Time-calibrated phylogeny of Monocotyledonae (monocots). The phylogeny is taken from a maximum likelihood analysis

of 590 species based on combined analysis atpB, matK, ndhF, rbcL, and trnL-F. The major clades of monocots are labeled, and estimates

of the likeliest growth form state (woody = brown; herbaceous = green) across all branches in the tree. Com + Zing represents the

combined clade of Commelinales and Zingiberales. (B) The distributions of 1C DNA content among growth form, with the optimum value

for woody plants (θW) estimated to be larger than the optimum inferred for herbaceous lineages (θH). However, the optimum value for

woody lineages was not identifiable, which may be explained by very weak selection (α < 0.001) operating within this regime.

intervals estimated from 100 replicates of a parametric bootstrap

(r = 0.984, P = 0.016). However, while coverage probability

(the proportion of times a true value lies within a specified con-

fidence interval) is unknown for the particular parameter values

in our data, simulations where we specify the true value resulted

in a coverage probability of approximately 75%, rather than the

ideal 95%, for both parametric bootstrap and approximate stan-

dard errors. This suggests that while approximate standard errors

are an efficient replacement for parametric bootstrapping, both

underestimate somewhat the true uncertainty in parameter values.

Confidence intervals are usually estimated for individual pa-

rameters. However, it is possible for the confidence intervals for

pairs of parameters to be much wider than the univariate confi-

dence intervals if the parameters are correlated with one another.

For example, for OU models a decrease in σ2 has a similar effect as

an increase in α: less variation at the tips. There are differences, so

the parameters are identifiable (greater α tends to erase phyloge-

netic signal, whereas lower σ2 does not). For practical problems, it

is possible to have a ridge of nearly equal likelihood where if one

changes just one parameter, one moves off the ridge, but where

changing both allows one to slide along the ridge. Univariate con-

fidence intervals would not capture this effect. We investigated

this by creating contour maps of the likelihood surface for pairs

of parameters in our best-fitting model, letting the other param-

eters vary to find their maximum likelihood estimates given the

values of our focal parameters. Results are shown in Figure 3. For

this empirical dataset, parameters appear distinguishable. How-

ever, this is an issue that users of this method should consider:

even if univariate confidence intervals suggest precise estimates,

it is worth considering the effect of varying pairs or potentially

correlated parameters.

Taken together, these results are consistent with the view

that life history alone can impose constraints to the evolution

of genome size. Although genome size in monocots is generally

under selective constraints, there are additional constraints that

likely reflect the influence of generation time. The longer genera-

tion times that characterize the “woody” palms (Gaut et al. 1992)

have provided fewer opportunities for changes in genome size to

occur per unit of time.

Discussion
The Hansen model assumes that the strength of selection and

the rate of stochastic motion (e.g., genetic drift, environmental

fluctuations, random mutations, etc.) do not vary among selec-

tive regimes. This has placed much of the emphasis on identi-

fying and quantifying trait optima and not enough on investi-

gating other characteristics of the evolutionary process, such as

rate or strength of attraction to these optima. The methods devel-

oped here relax these assumptions, by allowing the strength of

selection and stochastic motion parameters to vary among selec-

tive regimes. In its most complex form, our modification of the
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Figure 3. Contour plots of the likelihood surface. Each surface is constrained such that the parameters on the axes are fixed but the other

parameters are free to find their MLE given a pair of fixed parameter values. A “+” indicates the global maximum likelihood estimate for

the parameter values. Contour lines are drawn at points 0.5, 1.0, 1.5, and 2 lnL units away from the optimum. For plots of the same kind

of parameter, a dotted 1:1 line is also shown. Results indicate that the likelihood surfaces are peaked enough that parameter values are

readily distinguishable in this case.

Hansen model can assign each branch a trait optimum, a rate of

stochastic motion parameter, and a parameter for the strength of

selection.

In general, however, our method will be most appropriate

when investigating simpler models. As with existing approaches

(Butler and King 2004; O’Meara et al. 2006), our initial

implementation requires a priori assignment of model regimes

to branches. However, there is no intrinsic need for this given

the model. One could adopt this to an MCMC approach, like

that of Revell et al. (2011) and Eastman et al. (2011), to estimate

the best division of the tree into different model regimes. As

with Huelsenbeck et al. (2004) and Pagel and Meade (2006), a

reversible jump MCMC approach could also be used to get the

posterior probabilities of various models, ranging from BM1 to

OUMVA, in a single analysis.

A set of models, like those developed here, can be used in

several ways to address biological questions. The approach we

typically advocate is to select one or more models using AIC, re-

turn maximum likelihood parameter estimates from these models

(using model averaging if appropriate), and then focus discussion

on the parameter estimates and their biological significance. For

example, we found that “woody” and herbaceous monocot species

appear to be moving toward different optimum values at different

rates (Table 3), and these values and rates are different enough

to be biologically relevant. Parameter estimates could be inferred

using a Bayesian approach instead, which would include posterior

probabilities for the values at the cost of using prior information.

However, these models can be used in other ways as well. Some

researchers focus on model comparison, asking whether model X

is better than model Y. By “better” we mean a model that loses

less information about reality under AIC (Burnham and Anderson

2002), a model better supported by the data under Bayes Factors

(Kass and Raftery 1995), a model with greater posterior probabil-

ity using reversible jump MCMC (Green 1995), or the simplest

model that is not rejected in favor of a more complex one under

likelihood ratio tests.
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As biologists, we find the exercise of being primarily con-

cerned about which model is best rather than about what the

parameter estimates are under the best model(s), less compelling.

Biological reality is undoubtedly more complex, especially across

many species, than any single evolutionary model we may ex-

amine. Fit of a model, especially when compared with a more

complex model, is based on both how well the model param-

eters match the generating processes in the real world but also

how much data are available to use in fitting. A model for hu-

man height where the dependent variable of offspring height is

related to maternal height is probably a better fit to the data than

a model that relates day of the week of birth for good biological

reasons. A model incorporating maternal height, maternal nutri-

tion, offspring nutrition, history of offspring disease, and the full

genomic sequence of the offspring will undoubtedly be a better

fit than either model, but only once there are enough height data.

We would rather investigate, say, the magnitude of the heritable

effect of maternal height on offspring height rather than whether

offspring disease history is included or excluded from the best

model. In any case, there are many ways to do good science, and

we have endeavored in this article to evaluate how well these new

methods will perform in whatever framework they are used in,

whether parameter estimation or model comparison.

We have described the models here as reflecting drift, se-

lection, and other evolutionary processes. However, we note a

common misunderstanding with this sort of model: although the

overall parameters resemble those of microevolutionary models

(for example, for selection) they are actually describing the pat-

tern of evolutionary change. As shown by Hansen and Martins

(1996), even a simple model like single rate Brownian motion

is consistent with neutral genetic drift, selection toward a mov-

ing optimum, drift-mutation balance, and other evolutionary pro-

cesses. Thus, one can investigate whether parameter estimates are

consistent with predictions (i.e., a hypothesis that after a mass

extinction, the rate of evolution is increased due to diminished

population sizes and more drift), but it is difficult to work the

other way and use information about the best model or parameter

estimates to draw conclusions about evolutionary processes.

In regards to parameter estimation, our simulations suggest

that accurate parameter estimates will often require larger sample

sizes, especially when the underlying hypothesis involves testing

for differences in the strength of selection. The issue of sample

size need not only apply to the total size of a given tree. Accurate

parameter estimates may be difficult even for a large tree if it

is divided up among many selective regimes each comprised of

relatively few species and branches. That is not to say that our

methods should not be applied to smaller datasets or selective

regimes comprised of few species. We only advise that conclu-

sions be made cautiously. As our simulations suggest, there will

be circumstances in which meaningful patterns can be extracted

from smaller sample sizes. These will be instances where the sig-

nal in the data is particularly strong. However, one should bear

in mind that parameter estimates (especially for α) are generally

overestimated with smaller datasets (i.e., <128 species). In this

regard, it will be prudent to interpret results in light of the standard

error or confidence interval associated with each of the param-

eters. At times, it may be more meaningful to make qualitative

statements about parameter differences.

It would appear then that the models described here will nat-

urally compliment the very large, comprehensive trees that are

currently being generated by mining data from DNA sequence

repositories (e.g., McMahon and Sanderson 2006; Sanderson

et al. 2008; Smith et al. 2009, 2011; Thomson and Shaffer 2010).

Applying our methods to these large datasets hold the promise

of greater insights into evolution across broader phylogenetic and

temporal scales and can point to a number of patterns that could

not previously have been recognized and quantified. The methods

described here can begin to address important comparative ques-

tions and hypotheses underlying major morphological radiations

across the tree of life. For example, is the immense morphological

diversity observed within flowering plants consistent with higher

rates of evolution due to their generally faster generation times

(Stebbins 1981; Bond 1989)? Is the low morphological diversity

observed within marsupials related to constraints posed by their

mode of reproduction (Lillegraven 1975; Sears 2004)? Do bio-

geographic movements result in tracking ancestral optima or the

evolution of new climatic tolerances (Donoghue 2008)? We be-

lieve that studies along these lines will open up new avenues of

research.

PROGRAM NOTE

The methods and simulations described above are implemented

in the R package OUwie (pronounced “au-wi”), available through

CRAN. We have also made OUwie available in the Discov-

ery Environment at http://preview.iplantcollaborative.org. The

Discovery Environment is a web-based integrated plat-

form for data exploration and scientific discovery http://

www.iplantcollaborative.org/discover/discovery-environment.

As input OUwie requires a phylogeny with branch lengths

and internal node labels denoting the selective regimes at ancestral

nodes, and a trait file that contains information for each species

regarding the current selective regime and the values of a quanti-

tative trait. The user can specify a series of models ranging from

those based on Brownian motion processes available in Brownie

(O’Meara et al. 2006), to the OU models available in Butler and

King’s (2004) program ouch and the ones described here. OUwie

uses a bounded subplex routine for minimizing the likelihood

function to find the optimal parameter estimates. The user is also

provided a series of model diagnostics indicating whether the like-

lihood search returned stable and reliable parameter estimates.
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Appendix
The Generalized Hansen Model
Let Xi (t) be the trait at time t. We assume that Xi (t) satisfies the

solution of the stochastic differential equation

d Xi (t) = αi (t)(βi (t) − Xi (t))dt + σi (t)d B(t),

where d B(t) denotes the white noise process, αi (t) measures the

rate of adaption, βi (t)is the primary optimum of Xi , and σi (t)

measures size of stochastic perturbation at time t.

Multiplying both sides by the integral factor e
∫ t

0 αi (s)ds and

applying the chain rule and the fundamental theorem of calculus

yields the differential equation

dXi (t)e
∫ t

0 αi (s)ds = αi (t)βi (t)e
∫ t

0 αi (s)dsdt + σi (t)e
∫ t

0 αi (s)dsdBi (t).

Given the initial condition Xi (0) = θ0, the solution to this

equation is

Xi (t) =
(∫ t

0
αi (s)βi (s)e

∫ s
0 αi (x)dx ds

)
e− ∫ t

0 αi (s)ds

+
(∫ t

0
σi (s)e

∫ s
0 αi (x)dx dB(s)

)
e− ∫ t

0 αi (s)ds + θ0e− ∫ t
0 αi (s)ds .

Because this defines a Gaussian process, the first moment of

Xi (t) is completely specified. In particular, we have

E
(
Xi (T )|Xi (0) = θ0

) = θ0e− ∫ T
0 αi (t)dt

+e− ∫ T
0 αi (t)dt

(∫ T
0 αi (t)βi (t)e

∫ t
0 αi (x)dx dt

)
,

and the covariation between species i and species j is

Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0]

= E[Xi (T ) · X j (T )|Xi (0) = X j (0) = θ0]

−E[Xi (T )|Xi (0) = θ0]E[X j (T )|X j (0) = θ0].

= E((e− ∫ T
0 αi (t)+α j (t)dt )

(∫ T
0 σi (t)e

∫ t
0 αi (x)dx dBi (t)

)
×
(∫ T

0 σ j (t)e
∫ t

0 α j (x)dx dB j (t))
)

.

COVARIANCE STRUCTURE

The differential equation defining the covariation between species

i and j assumes that both αi and σi are a function of time. How-

ever, this equation also includes the much simpler cases such

as when neither is allowed to vary (OUM), or when only σi

is allowed to vary (OUMV), or when both are allowed to vary

(OUMVA). We show how the covariance between species i and

j can be computed under these special cases. In each case, for

t > 0 the path between root and the most recent common an-

cestor (mrca) of the ith and jth (mrca(i, j)) lineage is divided

into κ(ij) epochs, [0, si j,1], [si j,1, si j,2], . . . , [si j,κ(i j)−1, si j,κ(i j)],

that represent a change in selective regime. The parameters

are then assumed as constant values in the γth epoch, that is,

αi (t) = α j (t) = αγ,βi (t) = β j (t) = βγ and σi (t) = σ j (t) = σγ for

γ = 1, 2, . . . , κ(i j). We also apply the common assumption that

taxa evolve independently after diverging at time si j,κ(i j). The

path between the taxa i and mrca(i, j) is divided into κ(i) −
κ(ij)epochs [si j,κ(i j), si j,κ(i j)+1], . . . . . . ,

[
si j,κ(i)−1, si j,κ(i)

]
with the

constant value of parameters in the γth epoch, that is, αi (t) =
αi,γ,βi (t) = βi,γ and σi (t) = σi,γ, γ = κ(i j) + 1, . . . . . . , κ(i).

Because the generalized Hansen model includes several

special cases, we derived the covariance matrix between two

species as:

Special case 1, OUM: αi (s) = α j (s) = α; σi (s) = σ j (s) = σ

Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0]

= E

(
e−2αT

(∫ T

0
σeαt dBi (t)

)(∫ T

0
σeαt dB j (t)

))
.

Following Butler and King (2004), dBi (s) and dB j (s)

denote the increments of two standard Brownian motions with

covariation,

Cov[dBi (t), dB j (t)] = ρi j (t)dt.
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Given the assumption of ρij(t), the covariation between

species i and j can be computed as

Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0] = e−2αT
∫ si j

0
σ2e2αt dt,

which is equivalent to
∫ T

0 σ2e−2αtρi j (T − t)dt and the integral

can be calculated as,

Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0]

= σ2

2α
e−2α(T −si j )(1 − e−2αsi j ).

(A1)

General case, OUMVA: αi,γ(t) = αi,γ, α j,γ(t) = α j,γ,

σi,γ(t) = σi,γ, σ j,γ(t) = σ j,γ, and si j ≤ t ≤ T ; αi,γ(t) = α j,γ(t) =
αγ, σi,γ(t) = σ j,γ(t) = σγ, and 0 ≤ t ≤ si j ; γ =
1, 2, . . . , κ(i j), . . . , κ(i) or γ = 1, 2, . . . , κ(i j), . . . , κ( j).

Cov[Xi (T ), X j (T )|Xi (0) = X j (0) = θ0]

= E

[(
e− ∫ T

0 αi (t)+α j (t)dt
)(∫ T

0
σi (t)e

∫ t
0 αi (x)dx dBi (t)

)

×
(∫ T

0
σ j (t)e

∫ t
0 α j (x)dx dB j (t)

)] (A2.1)

= E

⎡
⎣
⎛
⎝e

−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

)⎞
⎠

×
(

κ(i)∑
γ=1

∫ si,γ

si,γ−1
σi,γe

∫ t
0 αi,γdx d Bi,γ(t)

)

×
(

κ( j)∑
γ=1

∫ s j,γ

s j,γ−1
σ j,γe

∫ t
0 α j,γdx d B j,γ(t)

)]
(A2.2)

=
⎛
⎝e

−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

)⎞
⎠

×E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
κ(i j)∑
γ=1

∫ si j,γ

si j,γ−1

σγeαγt dBi,γ(t)

+
κ(i)∑

γ=κ(i j)+1

∫ si,γ

si,γ−1

σi,γeαi,γt dBi,γ(t)

)
·

(
κ(i j)∑
γ=1

∫ si j,γ

si j,γ−1

σγeαγt dB j,γ(t)

+
κ( j)∑

γ=κ(i j)+1

∫ s j,γ

s j,γ−1

σ j,γeα j,γt dB j,γ(t)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2.3)

= e
−
(

aκ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

) ⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σ2
γe
∫ t

0 2αγdx dt

⎞
⎠

(A2.4)

= e
−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

) ⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σ2
γe2αγt dt

⎞
⎠

(A2.5)

= e
−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

) ⎛
⎝κ(i j)∑

γ=1

σ2
γ

e2αsi j,γ − e2αsi j,γ−1

2αγ

⎞
⎠

(A2.6)

where from equation (A2.3) to equation (A2.4), the term

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγeαγt dBi,γ(t)

+
κ(i)∑

γ=κ(i j)+1

∫ si,γ

si,γ−1

σi,γeαi,γt dBi,γ(t)

⎞
⎠ ·

⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγeαγt dB j,γ(t)

+
κ( j)∑

γ=κ(i j)+1

∫ s j,γ

s j,γ−1

σ j,γeα j,γt dB j,γ(t)

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is expanded into four different terms. The Itō Isometry is applied

to the term

E

⎡
⎣
⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγeαγt dBi,γ(t)

⎞
⎠ ·

⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγeαγt dB j,γ(t)

⎞
⎠
⎤
⎦

=
κ(i j)∑
γ=1

∫ si j,γ

si j,γ−1

σ2
γe2αγt dt

as the integrand functions are the same. For the other three terms,

as species i and species j are on different regimes, the independent

increment property of Brownian motion and the property of the

Itō integral apply, so we have

E

⎡
⎣
⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγe
∫ t

0 αγdx dBi,γ(t)

⎞
⎠

×
⎛
⎝ κ( j)∑

γ=κ(i j)+1

∫ s j,γ

s j,γ−1

σ j,γe
∫ t

0 α j,γdx dB j,γ(t)

⎞
⎠
⎤
⎦

= E

⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγe
∫ t

0 αγdx dBi,γ(t)

⎞
⎠

×E

⎛
⎝ κ( j)∑

γ=κ(i j)+1

∫ s j,γ

s j,γ−1

σ j,γe
∫ t

0 α j,γdx dB j,γ(t)

⎞
⎠

= 0.
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Similarly, we have

E

⎡
⎣
⎛
⎝ κ(i)∑

γ=κ(i j)+1

∫ si,γ

si,γ−1

σi,γe
∫ t

0 αi,γdx dBi,γ(t)

⎞
⎠

×
⎛
⎝κ(i j)∑

γ=1

∫ si j,γ

si j,γ−1

σγe
∫ t

0 αγdx dB j,γ(t)

⎞
⎠
⎤
⎦ = 0

Also by independence of species i and j after they diverge,

we have

E

⎡
⎣
⎛
⎝ κ(i)∑

γ=κ(i j)+1

∫ si,γ

si,γ−1

σi,γe
∫ t

0 αi,γdx dBi,γ(t)

⎞
⎠

×
⎛
⎝ κ( j)∑

γ=κ(i j)+1

∫ s j,γ

s j,γ−1

σ j,γe
∫ t

0 α j,γdx dB j,γ(t)

⎞
⎠
⎤
⎦ = 0.

Thus, the covariation for OUMVA is

Cov
[
Xi (T ), X j (T )|Xi (0) = X j (0) = θ0

]
= e

−
(

κ(i)∑
γ=1

αi,γ(si,γ−si,γ−1)+
κ( j)∑
γ=1

α j,γ(s j,γ−s j,γ−1)

) ⎛
⎝κ(i j)∑

γ=1

σ2
γ

e2si j,γ − e2si j,γ−1

2αγ

⎞
⎠

Special case 2, OUMV:

Derivation for OUMV case is technically the same as the

general case (A2.6) by assuming

αi (t) = α j (t) = α,

0 ≤ t ≤ T

Hence, the covariation between species i and j is

Cov
[
Xi (T ), X j (T )|Xi (0) = X j (0) = θ0

]
= e−2αT

2α

κ(i j)∑
γ=1

(e2αsi j,γ − e2αsi j,γ−1 )σ2
γ.

(A3)
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