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a b s t r a c t

Wederive an expression for the variation between parallel trajectories in phenotypic evolution, extending
the well known result that predicts the mean evolutionary path in adaptive dynamics or quantitative
genetics. We show how this expression gives rise to the notion of fluctuation domains – parts of the
fitness landscape where the rate of evolution is very predictable (due to fluctuation dissipation) and parts
where it is highly variable (due to fluctuation enhancement). These fluctuation domains are determined
by the curvature of the fitness landscape. Regions of the fitness landscapewith positive curvature, such as
adaptive valleys or branching points, experience enhancement. Regions with negative curvature, such as
adaptive peaks, experience dissipation. We explore these dynamics in the ecological scenarios of implicit
and explicit competition for a limiting resource.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Fitness landscapes have long been an important metaphor in
evolution. Wright (1931) originally introduced the concept to
explain his result that the mean rate of evolution of a quantitative
trait is proportional to gradient of its fitness. The result and its
accompanying metaphor continue to arise in evolutionary theory,
having been derived independently in quantitative genetics
(Lande, 1979), game-theoretic dynamics (Hofbauer and Sigmund,
1998; Abrams, 1993), and adaptive dynamics (Dieckmann and Law,
1996). The metaphor creates a deterministic image of evolution as
the slow and steady process of hill climbing. Other descriptions
of evolution have focused on its more stochastic elements –
the random chance events of mutations and the drift of births
and deaths that underlie the process (Kimura, 1983, 1968; Ohta,
2002). In this manuscript, we seek to characterize the deviations
or fluctuations of evolutionary trajectories around the expected
evolutionary path.
Our main result is that the size of the deviations of evolu-

tionary trajectories is determined largely by the curvature of the
evolutionary landscape whose gradient determines the mean rate
of evolution. The landscape metaphor can be used to understand
the interplay of stochastic and deterministic forces by identifying
regimes where the selection will counterbalance or enhance such
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stochastic fluctuations. Because the curvature can be positive (con-
cave up) or negative (concave down), the evolutionary landscape
can be divided into domains where fluctuations are enhanced or
dissipated. Tomake thismore precise, we focus on aMarkovmodel
of evolution used in the theory of adaptive dynamics. This Markov
model gives rise to the familiar gradient equation – the one which
first inspired the fitness landscapes metaphor – and also a more
precise statement of the fluctuation dynamics. The adaptive dy-
namics framework is general enough that we can consider how
these results apply in a variety of ecological scenarios. We illus-
trate the surprising consequence of bimodal distributions of ex-
pected phenotypes among parallel trajectories emerging from a
fixed starting point on a single-peak adaptive landscape due to
fluctuation enhancement. We also provide a landscape interpre-
tation that suggests how the ideas of fluctuation dynamics apply
to other ecological and evolutionary models.

2. Theoretical construction

Various definitions of fitness landscape have been used in the
study of evolutionary dynamics. The conventional idea postulates
a mapping between trait values and fitness (Levins, 1962, 1964;
Rueffler et al., 2004). The difficulty with this conception is that,
in many cases, the fitness of a given population type is mediated
largely through competition with other populations, and is thus
dependent on the current distribution of populations and their
respective phenotypes in the environment. This dependence on
densities or frequencies turns the static fitness landscape into
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a dynamic landscape, whose shape changes as the number of
individuals, and their corresponding traits, changes.
It is possible to depict the fitness landscape that emerges even

in the face of density- or frequency-dependent competition by
returning to Wright’s notion of a landscape. To do so, consider
a resident population of individuals in an environment, each of
which have an identical trait value, i.e., amonomorphic population.
Next, consider the per-capita fitness of a small number of mutant
individuals with a similar, but different trait. The per-capita fitness
of mutants in the environment may be larger, smaller or identical
to the per-capita fitness of residents. The gradient in fitness
around the trait represented by the resident is termed the selective
derivative (Geritz et al., 1997) in adaptive dynamics (analogous
to the selective gradient in quantitative genetics). The fitness
landscape is defined by integrating over these derivatives in the
trait space, to obtain a local picture of how fitness changes. In the
limit of small, slow mutation, it can be shown that the population
will evolve as predicted by the shape of the landscape: by climbing
towards a peak most rapidly when the slope is steep (Rueffler
et al., 2004), see Fig. 1 for three illustrative examples. The trait
on the horizontal axis is that of the resident, not the mutant. The
lower panels show the slope of the mutant fitness as a function
of the resident trait (up to a multiplicative factor)– the slope
of the mutant fitness changes as the resident trait changes. The
trait of the resident population evolves in the direction given by
that slope. Integrating the lower panel along the resident trait
axis reveals the fitness landscape the resident trait climbs in an
evolutionary process (top panels). Note that changes in themutant
fitness are captured in the changes in slope of the landscape;
the fitness landscape itself remains fixed. We derive the expected
evolutionary dynamics of the phenotypic trait of the resident and
its variation among parallel trajectories in the following sections.

2.1. Model

Consider a population monomorphic for a particular pheno-
typic trait, x. The abundance of the population, N(x, t) of trait x is
governed by its ecological dynamics:

dN(x)
dt
= f (x,N, E), (1)

which may depend on the trait, population abundance, and
the environmental conditions, E. The evolutionary dynamics
proceed in three steps (Dieckmann and Law, 1996; Champagnat
et al., 2006). First, the population assumes its equilibrium-level
abundance N∗(x), determined by its phenotypic trait x. Next,
mutants occur in the population at a rate given by the individual
mutation rate µ times the rate of births at equilibrium, b(x).
The mutant phenotype, y, is determined by a mutational kernel,
M(x, y). The success of the mutant strategy depends on the
invasion fitness, s(y, x), defined as the per-capita growth rate of
a rare population. Mutants with negative invasion fitness die off,
while mutants with positive invasion fitness will invade with a
probability that depends on this fitness (Geritz et al., 1997).
The invasion fitness is calculated from the ecological dynamics,

Eq. (1), and will in general depend on the trait x of the resident
population as well as that of the mutant, y. We assume that a
successful invasion results in replacement of the resident (Geritz
et al., 1997, 2002), and the population becomes monomorphically
type y. The details of this formulation can be found in Appendix A.
The important observation is that such amodel can be represented
by a Markov process on the space of possible traits, x. The
population can jump from any position x to any other position y
at a transition rate w(y|x) determined solely by the trait values x

and y. The probability that the process is at state x at time t then
obeys the master equation for the Markov process,

d
dt
P(x, t) =

∫
dy [w(x|y)P(y, t)− w(y|x)P(x, t)] . (2)

No general solution to the master equation Eq. (2) exists.
However, if the jumps from state x to state y are sufficiently small
(i.e., if mutants are always close to the resident), we can obtain
approximate solutions for P(x, t) by applying a method known as
the Linear Noise Approximation (van Kampen, 2001), Appendix B.
Doing so yields a general solution for the probability P(x, t) in
terms of the transition rates, w(y|x), Eq. (23). The linear noise
approximation derives a diffusion equation as an approximation to
the original jump process, as is commonly postulated. While this
diffusion can be written as a partial differential equation (PDE),
following Kimura, or as a stochastic differential equation, the
solution for the probability density can be proven to be Gaussian
and hence it suffices to write down ordinary differential equations
for the first two moments (Kurtz, 1971).

2.2. The fluctuation equation

We assume the mutational kernel M(y, x) is Gaussian in the
difference between the resident and mutant traits, y − x, with
width σµ and that mutations occur at a rate µ. A more thorough
discussion of these quantities can be found in Appendix A, where
they are developed in the process of deriving the transition
probability w(y|x) that specifies the underlying Markov process.
Using Eq. (23) which results from the systematic expansion of the
master equation (2), the mean trait x̂ obeys

dx̂
dt
=
1
2
µσ 2µN

∗(x̂)∂ys(y, x̂)|y=x̂ ≡ a1(x̂), (3)

with an expected variance σ 2 that obeys

∂σ 2

∂t
= 2σ 2∂x̂a1(x̂)+ 2

√
2
π
σµ
∣∣a1(x̂)∣∣ . (4)

Eq. (3) recovers the familiar canonical equation of adaptive
dynamics (Dieckmann and Law, 1996) for the mean trait. Eq. (4),
which describes the variance, we term the fluctuation equation
of adaptive dynamics. The linear noise approximation (see
Appendix B) also predicts that the probability distribution itself is
Gaussian, so that Eqs. (3) and (4) determine the entire distribution
of possible trajectories in this approximation. To illustrate the local
behavior of the model, we define the fitness landscape as L(x) =∫ x
0 a1(y) dy.

3. Fluctuation domains

A closer look at Eq. (4) will help motivate our geometric
interpretation of fluctuation domains. The approximation requires
that the mutational step size σµ is very small, hence the second
term will almost always be much smaller than the first (except
when the fluctuations σ themselves are also very small). Note that
the second term resembles the right-hand side of (3), differing only
by a small scalar constant and the fact that it is always positive.
Interestingly, this means that the second term vanishes at the
singular point where a1(x̂) = 0 and σ 2 = 0: fluctuations cannot
be introduced at an evolutionary equilibrium. That the first term is
the gradient of the deterministic (mean) dynamics and the second
term is smaller by a factor of the small parameter in the expansion
are general features of the linear noise approximation.
The first term of (4) implies that the variance σ 2 will increase

or decrease exponentially at a rate determined by ∂xa1(x); i.e., the
curvature of the fitness landscape. This landscape and its gradient
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(a) Implicit resource. (b) Chemostat. (c) Branching.

Fig. 1. Fluctuation domains. The lower panels show the rate of evolution given by Eq. (3) vs. the resident trait x for three ecological models: (a) implicit competition for a
limiting resource (Section 4), (b) explicit resource competition (Appendix C), and (c) symmetric branching for dimorphic populations (with a resident population of trait x
and another at−x, Appendix E). The horizontal dashed lines in the lower panel denote where a1(x) = 0, i.e., the selective derivative is zero, and correspond to evolutionarily
singular points, e.g., adaptive peaks and valleys. Shaded and unshaded regions in the lower panels correspond to trait values for which fluctuations are enhanced (shaded)
and dissipated (unshaded). The adaptive landscape is defined as the integral of this expression (upper panels) – where populations climb the hills at a rate proportional to
their steepness. Note that the adaptive landscape for the symmetric branching case has two peaks, and so evolutionary trajectories will lead to a stable dimorphism.

are depicted in Fig. 1 for several ecological scenarios. Plotting the
gradient itselfmakes it easier to seewhen fluctuationswill increase
or decrease. On the gradient plot the singular point is found where
the curve crosses the horizontal axis.
In the neighborhood of a singular point corresponding to an

adaptive peak, the slope is negative, hence the first term in
Eq. (4) (the coefficient of σ 2) is negative and fluctuations dissipate
exponentially. This means that two populations starting with
nearby trait values will converge to the same trajectory. In this
region nopathwill stochastically drift far from themean trajectory,
hence the canonical equationwill provide a good approximation of
all observed paths. We term the part of the trait-space landscape
where ∂xa1(x) < 0 the fluctuation-dissipation domain, analogous
to the fluctuation-dissipation theorem found in other contexts (van
Kampen, 2001).
Farther from the singular point corresponding to an adaptive

peak, ∂xa1(x) becomes positive (see Fig. 1(a) and (b)). While this
part of trait-space still falls within the basin of attraction of the
singular point, the variance σ 2 between evolutionary paths will
grow exponentially. Initially identical populations starting with
trait values in this region will experience divergent trajectories
due to this enhancement. The variation can become quite large,
with evolutionary trajectories that differ significantly from the
mean. We call this region of trait-space where ∂xa1(x) > 0 the
fluctuation enhancement domain. Eventually trajectories starting
in this region will be carried into the fluctuation-dissipation
domain, where they will once again converge.
Evolutionary branching points (Dieckmann and Doebeli, 1999;

Geritz et al., 1998) provide another example of a fluctuation
enhancement domain. Until now,we have assumed that successful
mutants replace the resident population, a result known as
‘‘invasion implies substitution’’ (Geritz et al., 2002). However, at
an evolutionary branching point, the mutant invader no longer
replaces the resident population, and the population becomes
dimorphic. In dealing with monomorphic populations, we have
been able to describe the evolutionary dynamics in terms of the
change of a single trait, describing a single resident population. For
dimorphic populations, two resident populations coexist, and both
influence the shape of the landscape. Thus, an invader’s fitness,
s(y; x1, x2), and its rate of evolution, a1(x1, x2), will depend on how
it performs against both populations. The evolutionary dynamics
after branching are two-dimensional and require a multivariate
version of Eq. (4). Despite this, we can still gain qualitative insight
using the intuition that connects fluctuation domains to curvature.
The existence of the stable dimorphism fundamentally distorts

the landscape. While the population was monomorphic, being

closer to the singular point always ensured a higher fitness. Once a
resident population sits on either side of a branching point though,
the singular point becomes a fitness minimum. This description
of evolution towards points which become fitness minima after
branching has been addressed extensively elsewhere (Geritz
et al., 1997, 1998; Geritz, 2004). Here, what interests us is the
effect of branching on fluctuations. If the landscape is smooth,
a minimum must have a positive curvature and therefore must
be an enhancement domain. The farther a mutant gets from
the branching point, the faster it can continue to move away,
thus enhancing the initially small differences between mutational
jumps. A rigorous description of this effect would require a
multivariate version of Eq. (4) which is beyond the scope of this
paper. Instead, we illustrate the enhancement effect by taking
a slice of the two-dimensional landscape by assuming that the
dimorphic populations have symmetric trait values about the
singular strategy, x1 = −x2 = x. The fitness landscape for the case
of symmetric branching is shown in Fig. 1(c), and the derivation
provided in Appendix D. Note that the region around the branching
point is a fluctuation enhancement regime and the two new fitness
maxima far from the branching point are in fluctuation dissipation
regimes.
To provide a more concrete illustration of the fluctuation

dynamics, we will focus on the description of the ecological
competition model and compare the theoretical predictions of
Eq. (3) and Eq. (4) to point-process simulations of the Markov
process (Gillespie, 1977).

4. An example of fluctuation domains in resource competition

4.1. An ecologicalmodel of implicit competition for a limiting resource

The logistic model of growth and competition in which
populations compete for a limited resource is a standard model
in ecological dynamics (Dieckmann and Doebeli, 1999). Here, we
consider the population dynamics of N(x, t) individuals each with
trait x:

dN(x, t)
dt

= rN(x, t)

1−
∑
y
N(y, t)C(x, y)

K(x)

 , (5)

where r is the birth rate and
∑
y rN(y)C(x, y)/K(x) is the density-

dependent death rate. In the model, K(x) is the equilibrium
population density and C(x, y) is a function which describes the
relative change in death rate of individuals of type x due to
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competition by individuals of type y. Given C(x, x) = 1, the
equilibriumdensity of amonomorphic population isN∗(x) = K(x).
FollowingDieckmann andDoebeli (1999)we assume the following
Gaussian forms,

K(x) = K0e−x
2/(2σ 2k ), (6)

and

C(x, y) = e−(x−y)
2/(2σ 2c ), (7)

where σk and σc are scale factors for the resource distribution and
competition kernels respectively. We focus on the case σc > σk,
forwhich themodel has a convergence-stable evolutionarily stable
strategy (ESS) at x = 0 (Geritz et al., 1998). Having specified
the ecological dynamics, we must also specify the evolutionary
dynamics, which we assume occur on a much slower time scale.
We assume that with probability µ an individual birth results in
a mutant offspring, and that the mutant trait is chosen from a
Gaussian distribution centered at the trait value of the parents
and with a variance σ 2µ. From this we can assemble w(y|x), and
compute equations (3) and (4) (see Appendix B).

4.2. Numerical simulation of stochastic evolutionary trajectories

There aremanyways to represent evolutionary ecologymodels
in numerical simulations, including finite simulations, fast-slow
dynamics, and point processes (Dieckmann and Doebeli, 1999;
Nowak and Sigmund, 2004; Champagnat et al., 2006; Champagnat
and Lambert, 2007). We choose to model the evolutionary
trajectories of the ecologicalmodel in Eq. (5) by explicitly assuming
a separation of ecological and evolutionary time scales. First, given
a trait x, the ecological equilibrium density N∗(x) is determined.
Then, the time of the next mutant introduction is calculated based
on a Poisson arrival rate of µrN∗(x). In essence, we are assuming
that ecological dynamics occur instantaneously when compared
to evolutionary dynamics. The trait of the mutant, y, is equal to x
plus a normal deviate with variance σ 2µ. The mutant replaces the
resident with probability given by the standard branching process
result, 1 − d(y, x)/b(y, x) where d and b are the per-capita birth
and death rate of the mutant, respectively, so long as b > d,
and with probability 0 otherwise. The ecological steady state is
recalculated and the process continues. Simulations are done using
Gillespie’s minimal process method (Gillespie, 1977). Estimates of
the mean phenotypic trait x̂ and the variance σ 2 are calculated
from ensemble averages of at least 105 replicates.

4.3. Comparison of theory and simulation

We consider simulations with three different initial conditions:
starting within the fluctuation-dissipation domain (x = 1), just
into the fluctuation-enhancement domain (x = 2), and deep into
the fluctuation enhancement regime (x = 3) in successive rows
in Fig. 2. For each condition, the simulation is repeated 105 times
and we compare the resulting distribution of trajectories to that
predicted by theory. In the first column we plot the numerically
calculated mean path taken to the ESS (shown in circles), and
compare to the theoretical prediction of Eq. (3). In the second
column, we plot the variance between paths, and compare to the
predictions of Eq. (4). As each replicate begins under identical
conditions, the initial variance is always zero. In the third column,
wepresent the distribution of traits among the replicates at a single
instant in time. We chose the moment of maximum variance so
that deviations from the theoretically predicted Gaussian kernel
will be most evident.

4.3.1. Fluctuation-dissipation domain
Starting at the edge of the dissipation domain, fluctuations grow

for only a short time before rapidly decaying, in the first row of
Fig. 2. Since the simulation is sampled at regular time intervals, the
vertical spacing of points indicate the rate of evolution. Theoretical
predictions closelymatch simulation results for both themean and
variance, and the resulting distribution matches the theoretically
predicted Gaussian. The variance represents an almost negligible
deviation from the mean trajectory.

4.3.2. Fluctuation-enhancement domain
Our second ensemble at x = 2 begins clearly within the

fluctuation-enhancement domain. In the second row of Fig. 2,
the variance plot (center panel) begins by growing exponentially.
Once the population crosses into the dissipation domain, at x =
1, at about t = 1000, the variance peaks and then dissipates
exponentially. This transition appears as an inflection point in
the mean path (left panel). Though the variation now represents
significant deviations, the distribution still appears Gaussian (right
panel).

4.3.3. Strong fluctuations
In the third row of Fig. 2, starting deep within the fluctuation-

enhancement domain at x = 3, theory and simulation agree
initially. Remaining long enough in this domain, fluctuations are
eventually of the same order of magnitude as the macroscopic dy-
namics themselves, and the linear noise approximation underly-
ing the theory begins to break down. The theory and simulation
variance diverge, while the mean path is substantially slower than
predicted by the canonical equation. In the right panel, the reason
for this becomes clear. At this point in the divergence, the distribu-
tion is far from Gaussian, rather it has become bimodal, with some
replicates having reached the stable strategy at x = 0 and others
having hardly left the initial state.
The mechanism behind the emergence of bimodal probability

distributions for trajectories can be seen in the final row of
Fig. 2. The theoretical trajectory predicted by Eq. (3) is sigmoidal,
comprised of slow change at the beginning and end and rapid
evolution in the middle. Ecologically, this arises at the beginning
from the small population size available to generatemutations, and
at the end from theweakening selection gradient. Populationswith
intermediate trait values hence experience rapid trait evolution,
giving rise to this transiently bimodal distribution. The theory
provides insight into this case of strong fluctuations in two
ways – first, it is driven by the existence of a fluctuation-
enhancement domain, and second, it is anticipated by the
theoretical prediction of fluctuations that are of the same order
as the macroscopic dynamics. We observe that these macroscopic
fluctuations can arise whenever the population remains long
enough in the enhancement regime, independent of other
model details. The fluctuation equation for the explicit resource
competition (chemostat) model shown in Fig. 1(b) and described
in Appendix C never predicts fluctuations that reach macroscopic
values, and simulations of this system (not shown) do not produce
bimodal trait distributions.

5. Discussion

The metaphor of fitness landscapes has been a powerful tool
for understanding evolutionary processes (Wright, 1932; Lande,
1979; Abrams, 1993; Dieckmann and Law, 1996). The concept of
a landscape arises naturally from describing the rate of change of
the mean trait as being proportional to the evolutionary gradient.
We extend this metaphor to understand fluctuations away from
this mean, where our analysis of a Markov process representation
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Fig. 2. Simulations over fluctuation domains. The dynamics of the mean path, variance between paths, and snapshots of the trait distribution in time for three initial
conditions: x0 = 1, x0 = 2, and x0 = 3 (top to bottom successively). The three rows correspond to trajectories experiencing fluctuation dissipation (tow) and fluctuation
enhancement (bottom) along with an intermediate case (middle). The mean (first column) and variance (second column) among trait values are plotted over time. Circles
are simulation averages from 105 replicates and lines are theoretical predictions. The final column shows the theoretical Gaussian distribution (solid line) at the point in
time indicated by the dashed line and closed circle in the first two columns, and the actual histogram (circles) of positions across the replicates at that time. The bottom right
panel shows a bimodal distribution among replicates in the case of fluctuation enhancement. Parameters: σ 2k = 1, σ

2
c = 1.01, r = 10, σµ = 0.0005, µ = 1.

of evolution in the adaptive dynamics framework brings us back to
the notion of a fitness landscape. In this case, it is the curvature of
that landscape which informs the dynamics of these fluctuations
away from the expected evolutionary path. Our result linking
landscape curvature to fluctuation domains is consistent with
similar results from quantitative genetics that relate the sign
and magnitude of the quadratic selection coefficient in the Price
equation to increases or decreases in trait variation (Lande and
Arnold, 1983; Chevin and Hospital, 2008).
Though the mathematical analysis of the Markov process is

somewhat technical, the result is generally intuitive. Graphs such
as Fig. 1 provide a visualization of how fluctuations will behave
on the landscape, while our fluctuation equation, Eq. (4), provides
a more explicit description of those fluctuations. This result, like
the gradient expression itself, relies on the underlying randomness
being small relative to the scale of evolutionary change. We have
seen how these approximations can break down in the case of
very large fluctuations, resulting in a bimodal distribution of
phenotypes. While Eq. (4) fails to describe this case accurately, it
predicts the breakdown of the approximation by the explosion of
fluctuations. Though we have focused on the adaptive dynamics
model of evolution, we hope that the approach taken here can
be extended to other landscape representations. Further, we
hope that our model will be broadly applicable to assessing the
repeatability of evolution in experimental studies of microbes

and viruses (Wichman et al., 1999; Cooper et al., 2003) and in
ecological studies of rapid phenotypic change caused by biotic
interactions (Duffy and Sivars-Becker, 2007) and/or anthropogenic
factors (such as over-fishing) (Olsen et al., 2005).
In this work, we have compared theoretical predictions to nu-

merical simulations. Even when a closed form expression such
as (4) exists for the deviations, some of the most dramatic ex-
amples in Fig. 2 emerge only when the diffusion approximation
breaks down and stochastic forces become macroscopic. In the
spirit of scientifically reproducible research (Gentleman and Lang,
2007; Schwab et al., 2000; Stodden, 2009), we freely provide all
the source code required to replicate the simulations and figures
shown in the text. Though the numerical simulations are written
in C for computational efficiency, we provide a user interface and
documentation by releasing all the code, figures, text, and exam-
ples as a software package for the widely used and freely available
R statistical computing language. This package can be downloaded
from http://ecotheory.biology.gatech.edu/downloads/.
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Appendix A. Adaptive dynamics and the transition probability
w(y|x)

In this appendix we construct the Markov process w(y|x)
under the assumptions of adaptive dynamics (Dieckmann and Law,
1996). Theprobability per unit timeofmaking the transition in trait
space fromamonomorphic populationwith trait x to onewith trait
y is given by

w(y|x) =M(y, x)D(y, x). (8)

In the framework presented here, a monomorphic population of
residents with trait x generate mutants with trait y, some of
which survive. The rate at which a mutation is generated from a
population is

M(y, x) = µ(x)b(x)N∗(x)M(x, y), (9)

where b(x) is the per-capita birth rate at equilibrium, µ(x) the
mutation probability per birth, N∗(x) the equilibrium population
size for a population with trait x, and M(x, y) is the distribution
from which the mutant trait is drawn. The probability of surviving
accidental extinction of a branching process given the mean
individual birth rate b and mean death rate d for the mutant y is
D(y, x) = 1− d(y, x)/b(y, x) if d(y, x) < b(y, x) andD(y, x) = 0
otherwise (Feller, 1968). The terms b(y, x) and d(y, x) refer to the
birth and death rate, respectively, of a rare mutant with trait y in
an equilibrium population of x.
Given a mutant strategy y such thatD(y, x) > 0 we have

w(y|x) = µ(x)N∗(x)b(x)M(x, y)[b(y, x)− d(y, x)]/b(y, x). (10)

Expanding the fitness, b(y, x)− d(y, x), to first order the transition
rate is then

w(y|x) ≈ µ(x)N∗(x)∂ys(y, x)|y=xM(x, y)[y− x], (11)

where ∂ys(y, x)|y=x is known as the selective derivative (Geritz
et al., 1997). From Eq. (11) one can apply a particular model by
specifying expressions for the mutation rate µ(x), stationary pop-
ulation size, N∗(x), fitness function s(y, x) and mutational kernel
M(x, y). In the competition for a limited resource model, (Dieck-
mann and Doebeli, 1999) used here, these are:

µ(x) = µ,

M(y, x) =
1√
2πσ 2µ

e
−
(y−x)2

2σ2µ ,

s(y, x) = r

1− N∗(y)e−
(x−y)2

2σ2c

N∗(x)

 ,
N∗(x) = K0e

−
x2

2σ2k . (12)

Consequently, the evolutionary transition rates in for this model
are given by

w(y|x) = −µK0e
−
x2

2σ2k
rx
σ 2k

e
−
(y−x)2

2σ2µ√
2πσ 2µ

[y− x]. (13)

The transition ratew(y|x) for the explicit resource competition
model is presented along with the model details in Appendix C.
Using the appropriate transition rate in the linear noise approxi-
mation described in Appendix B, we recover the equations for the
curves plotted in Fig. 1 which are integrated to obtain the theo-
retical predictions of Fig. 2. These explicit expressions are given in
Appendix E.

Appendix B. Linear noise approximation

B.1. About the approximation

The linear noise approximation is a common approach for de-
scribing Markov processes. Though often applied in discrete cases
such as one-step (birth-death) processes, it can be generalized to
the continuous case we consider, where a population at trait x
can jump to another trait value y. The approximation transforms
the Markov process specified by a master equation on the tran-
sition rates w(y|x) to an approximate partial differential equa-
tion (PDE) for the probability distribution. This PDE resembles the
Fokker–Planck equation for the process,1 except that the PDE re-
sulting from the linear noise approximation is guaranteed to be
linear and its solutions Gaussian. Consequently, solving for the two
moments, the mean and variance, will lead to a system of ordinary
differential equations. Substituting the form ofw(y|x) found in Ap-
pendix A into this ODE system recovers Eqs. (3) and (4) in the text.
The approximation is straight-forward (involving a change

of variables and a Taylor expansion), if cumbersome. The
approximation is rigorously justified over any fixed time interval T
in the limit of small step sizes (Kurtz, 1971), which parallels more
modern justifications of the canonical equation (Champagnat et al.,
2001). The original derivation of the canonical equation makes use
of (unscaled) jump moments, introduced by van Kampen (2001).
We review this approach first, as it provides a good intuition for the
full linear noise approximation. The actual approximation relies on
a change of variables which makes explicit use of the small step
sizes, and derives rather than assumes the Gaussian character of
the distribution.

B.2. Original jump moments

The dynamics of the average phenotypic trait are given by

dx̂(t)
dt
=

∫
dx x

d
dt
P(x, t). (14)

Using the master equation

d
dt
P(x, t) =

∫
dy [w(x|y)P(y, t)− w(y|x)P(x, t)] , (15)

to replace ddt P(x, t) and performing a change of variables, we find,

dx̂(t)
dt
=

∫
dx
∫
dy[y− x]w(y|x)P(x, t). (16)

Defining the kth jump moment as ak =
∫
(y − x)kw(y|x)dy, the

dynamics can be written as,

dx̂(t)
dt
= 〈a1(x)〉. (17)

It is by no means obvious if or when the deterministic path
approximation 〈a1(x)〉 ≈ a1(〈x〉) is valid, as a1 will often be

1 Indeed, they are equivalent if transition rates are linear – in which case the PDE
is also exact.
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nonlinear. The justification lies in the linear noise approximation.
Proceeding as above, we also find an expression for the second
moment,

d〈x2(t)〉
dt

= 2〈xa1(x)〉 + 〈a2(x)〉. (18)

Which again, we will only be able to solve by means of the linear
noise approximation.

B.3. The linear noise approximation

To justify this step we will change into variables where we can
have an explicit parameter ε that relates to the step size. The trait
x is approximated by an average or macroscopic value φ and a
deviation ξ that scales with themutational step size ε; x = φ+εξ .
Defining r ≡ y−x expand the transition ratew(y|x) in powers of ε,

w(y|x) = f (ε)
[
Φ0(εx; r)+ εΦ1(εx; r)+ ε2Φ2 + · · ·

]
, (19)

where the Φ terms in the expansion are functions in which ε
appears only in terms of εx. The function f (ε) indicates that we
can rescale the entire process by some arbitrary factor of ε since it
can always be absorbed into the timescale. We can then define the
transformed jump moments as moments ofΦ rather thanw,

αν,λ(X) =
∫
rνΦλ(X, r)dr. (20)

The probability P(x, t) is expressed in terms of the new
variables P(φ(t) + εξ, t) = 5(ξ , t), and the master equation, (2)
becomes:
∂

∂τ
5(ξ , τ )− ε−1

dφ
dτ

∂

∂ξ
5(ξ , τ )

= −ε−1
∂

∂ξ
α1,0(φ(τ)+ εξ) ·5(ξ , τ )

+
1
2
∂2

∂ξ 2
α2,0(φ(τ)+ εξ) ·5(ξ , τ )

−
1
3!
ε
∂3

∂ξ 3
α3,0(φ(τ)+ εξ) ·5(ξ , τ )

+ ε
∂

∂ξ
α1,1(φ(τ)+ εξ) ·5(ξ , τ )+ O(ε2), (21)

where we have rescaled time by ε2f (ε)t = τ . Expanding the jump
moments around the macroscopic variable φ,

αν,λ(φ(t)+ εξ) ≈ αν,λ(φ)+ εξα′ν,λ +
1
2
ε2ξ 2αν,λ(φ)

′′
+ Oε3,

(where primes indicate derivatives with respect to φ), and
collecting terms of leading order in ε we have:

dφ
dτ
= α1,0(φ), (22)

which is a completely deterministic expression. Substituting the
form of w(y|x) from (11) recovers the canonical equation of
adaptive dynamics, Eq. (3). Observe that the fluctuations are an
order ε smaller, demonstrating that this is indeed a consistent
approximation. Collecting terms of order ε0 we have the partial
differential equation

∂

∂τ
5(ξ , τ ) = −α′1,0(φ)

∂

∂ξ
ξ5+

1
2
α2,0(φ)

∂2

∂ξ 2
5, (23)

while all other terms are order ε or smaller. This is a partial dif-
ferential equation for the evolution of the probability distribution
of traits. It is a linear Fokker–Planck equation, hence its solution is

Gaussian and5(ξ , t) can be described to this order of accuracy by
its first two moments,
∂〈ξ〉

∂t
= α′1,0(φ)〈ξ〉,

∂〈ξ 2〉

∂t
= 2α′1,0(φ)〈ξ

2
〉 + α2,0(φ),

where the prime indicates derivative with respect to the trait x.
If α′1,0(φ) < 0 or the initial fluctuations 〈ξ〉0 are zero, the first
moment can be ignored, and the variance of the ensemble is given
by transforming back into the original variables:

ε2
∂σ 2

∂t
= 2α′1,0(φ)σ

2
+ α2,0(φ). (24)

Transforming between the scaled variables and the original
variables requires the appropriate choice of ε. The assumption that
mutational steps are small provides a natural choice: ε = σµ.
Substituting Eq. (11) to compute the jump moments, this recovers
the fluctuation expression (4) in the text. Note that even before
we perform this substitution that (24) has the same form as (4);
fluctuations grow or diminish at a rate determined by the sign of
the gradient of the deterministic equation, Eq. (22).

Appendix C. Chemostat model

The graphical model for a second scenario is also displayed
in Fig. 1. This scenario describes competition and evolution with
explicit resource dynamics for a chemostat system. We consider
a resource Q that flows in at rate D from a reservoir fixed at
concentration Q0. To retain constant volume in the chemostat,
both biotic and biotic components are flushed from the system
at constant rate D. The chemostat contains populations with Ni
organisms, each of which take up nutrients at a rate gi and convert
these into reproductive output with efficiency ηi,

Q̇ = DQ0 − DQ − g(Q )N, (25)

Ṅi = −DNi + ηigi(Q )Ni. (26)

Assume that the uptake of nutrients is governed by Michaelis-
Mentin dynamics, and also that a trade-off exists between ef-
ficiency of nutrient take-up and conversion (imagining greater
investment in foraging means less energy available for reproduc-
tion),

g(Q ) = Q/(1+ hQ ),
η(x) = x,
h(x) = x2,

where the trait xmay differ between populations.
The associated equilibrium population size for a population

with trait x is

N̄(x) =
DQ0 − DQ̄
g(Q̄ , x)

= xQ0 −
xD

x− x2D
.

Similarly, the resource uptake of a mutant with trait y in an
environment at an equilibrium set by a resident type with trait x is
given by

gy(Q̄x) =
1

x/D− x2 + y2
,

from which we find the invasion fitness function and its gradient,

s(y, x) =
y

x/D− x2 + y2
− D,

∂ys(y, x)|y=x =
D
x
− 2D2.
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Assuming a Gaussian mutation kernel and constant mutation
rate, from Eq. (11) the transition rate functionw(y|x) is

w(y|x) ≈ µ
[
xQ0 −

xD
x− x2D

] [
D
x
− 2D2

]
e
−
(y−x)2

2σ2µ√
2πσ 2µ

[y− x]. (27)

Appendix D. Branching model

The model of implicit competition for a limiting resource,
Eqs. (5)–(7), is well known to exhibit the phenomenon of
evolutionary branching when the competition kernel is narrower
than the resource distribution, σc < σk (Dieckmann and Doebeli,
1999). Once branching occurs, the invasion fitness of a raremutant
is no longer given by s(y, x) as in Eq. (12), but instead depends on
the trait values of each of the coexisting residents x1 and x2, as
in s(y, x1, x2). This invasion fitness can still be calculated directly
from the competition model, Eqs. (5)–(7). This mutant can either
arise from the x1 or x2 population and replace it. If we assume
x1 = −x2 = x, we have the case of a symmetrically branching
population. While many realizations of branching may be close
to symmetric, this is but a one-dimensional slice through a two-
dimensional trait space (x1, x2). In this case, we can express the
equilibriumdensity of each resident species byKres(x) = K(x)/(1+
C(x,−x)). We then consider the initial per capita growth rate of a
rare mutant with trait y:

s(y, x,−x) = r
(
1−

Kres(x)C(x, y)+ Kres(−x)C(−x, y)
K(y)

)
. (28)

This replaces the s(y, x) function for themonomorphic population,
and we proceed as before to calculate a1(x) in Eq. (3). That is, we
evaluate ∂ys(y, x,−x) at y = x, take Kres(x) ≡ N∗(x) to recover
a closed-form slice of the branching landscape that is depicted
in Fig. 1(c). The expression itself is given in the Appendix E,
Eq. (31).

Appendix E. Explicit solutions for examples

For the example logistic competition in a monomorphic
population, the evolution of the mean trait x is given by:

dx
dt
= −

x
2σ 2k
rµσ 2µK0e

−x/2σ 2k . (29)

In Fig. 1, we choose parameters such that rµK0σ 2µ/2 = 1 and
σ 2k = 1.
For the chemostat:

dx
dt
=
1
2
µσ 2µ

(
Qx−

D
1− xD

)
(D/x− 2D2). (30)

In Fig. 1, we choose parameters such that µσ 2µ = 1, D = 0.1, and
Q = 0.1.
For the symmetrically dimorphic population,

dx
dt
=

−rµσ 2µK0e
−
x2
2

(
4
σ2c
−
1
σ2k

) (
σ 2c + e

2x2

σ2c σ 2c − 2σ
2
k

)
x(

1+ e2x2/σ 2c
)2
σ 2c σ

2
k

. (31)

The parameters for the dimorphic population plot of Fig. 1 are
chosen such that rµK0σ 2µ/4 = 1, σ

2
k = 2 and σ

2
c = 1.

The right-hand side of each of these expressions is the function
a1(x) from the text, Eq. (3). This function also determines the
fluctuation dynamics byway of Eq. (4). The respective plots of a1(x)
are used in Fig. 1, while solving the ODEs for x̂(t) and σ 2(t) gives
the theoretical predictions of Fig. 2.
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